Rajiv Gandhi College of Arts, Commerce, \& Science.Vashi Navi Mumbai.
 \{Permanently Affiliated to University Of Mumbai\}

 ACCREDITED BY NAAC, GRADE 'B'

 ACCREDITED BY NAAC, GRADE 'B'}

Sample Multiple Choice Questions

Class: S.Y.B.Sc.

Subject: PHYSICS PAPER - II

Semester: IV

1. The walls of a particle in a box are supposed to be \qquad
a) Small but infinitely hard
b) Infinitely large but soft
c) Soft and Small
d) Infinitely hard and infinitely large

Ans. d
2. The wave function of the particle lies in which region?
a) $x>0$
b) $x<0$
c) $0<X<L$
d) $x>L$

Ans. c
3. The Energy of the particle is proportional to \qquad
a) n
b) n^{-1}
c) n^{2}
d) n^{-2}

Ans. C
4. For a particle inside a box, the potential is maximum at $x=$ \qquad
a) L
b) 2 L
c) $\mathrm{L} / 2$
d) 3 L

Ans. a
5. The Eigen value of a particle in a box is \qquad
a) $\mathrm{L} / 2$
b) $2 / \mathrm{L}$

(d) $\sqrt{\frac{2}{L}}$

Ans. d
6. Calculate the Zero-point energy for a particle in an infinite potential well for an electron confined to a 1 nm atom.
a) $3.9 \times 10^{-29} \mathrm{~J}$
b) $4.9 \times 10^{-29} \mathrm{~J}$
c) $5.9 \times 10^{-29} \mathrm{~J}$
d) $6.9 \times 10^{-29} \mathrm{~J}$

Ans.c
7. The concept of matter wave was suggested by \qquad
a) Heisenberg
(b) de Broglie
(c) Schrodinger
(d) Laplace

Ans. d
8. The intensity of the diffraction pattern is proportional to \qquad of the wave function
(a) forth power
(b) cube
(c) sixth power
(d) square

Ans. d
9. The function representing matter waves must be \qquad
(a) complex
(b) real
(c) zero (d) infinity

Ans. a
10. The total probability of finding the particle in space must be \qquad
(a) zero
(b) unity
(c) infinity
(d) double

Ans. b
11. The normalized wave function must have \qquad norm
(a) infinite
(b) zero
(c) finite
(d) complex

Ans. c
12. The Non-normalized wave function must have \qquad norm
(a) infinite
(b) zero
(c) finite
(d) complex

Ans. a
13. For normalized wave function $\psi \rightarrow 0$ as $r \rightarrow$ \qquad
(a) 0
(b) 1
c) α
d) -1

Ans. C
14. The square of the magnitude of the wave function is called \qquad
(a) current density
(b) probability density
(c) zero density
(d) volume density

Ans. b
15. The operator ∇ is called \qquad operator
(a) Hamiltonian
(b) Laplacian
(c) Poisson
(d) vector

Ans. b
16. \qquad principle states that the actual path taken by the light ray is one which minimizes the integral
(a) Heisenberg
(b) Hamilton's
(c) Maupertuis'
(d) Fermat's

Ans. c
17. These quantum mechanical entities (with some exceptions) must be:
a) Single-valued (and their derivatives too).
b) finite (and their derivatives too). c) continuous (and their derivatives too).
d) normalizable or square-integrable.

Ans. a
18. The eigenvalues of a particle incident on s potential barrier are \qquad
(a)zero
(b)discrete
©continuous
(d) infinite

Ans. c
19. The energy level of the one-dimensional harmonic oscillator are
(a) Continuous
(b) Equally spaced
© 2 -fold degenerate
d) 3 -fold degenerate

Ans. b
20. Schrodinger wave equation for a moving particle contains
(a) $1^{\text {st }}$ order time derivative
b) $2^{\text {nd }}$ order time derivative
c) 3 rd order time derivative
d) 4th order time derivative

Ans. a
21. For a stationary state the probability density is \qquad
a) Function of time
b) Independent of space coordinate
c) Independent of time
d) Independent of energy

Ans. a
22. Expectation value of position is \qquad
a) $\langle x\rangle$
b) (x)
c) $<x$)
d) $(x>$

Ans. a
23. The transmission and refection coefficients is
a) $R+T=1$
b) $\mathrm{R}-\mathrm{T}=1$
c) $R=T$
d) $R=2 T$

Ans. a
24. If the total energy E is less than potential $V 0$, then the $k . E$. in the region of potential is
a) positive
b)negative
c) zero
d) infinity

Ans. b
25. In the case of one dimensional infinite deep potential, the principle quantum number n cannot have the value \qquad
a) 0
b)1
c) 2
d) 3

Ans. a

