1. The sum of deviation of the actual values of Y and the computed values of Y is \qquad .
A. 0
B. 1
C. Maximum
D. Minimum
2. In the function $y=f(x)$, the independent variable x is called \qquad -.
A. entry
B. argument
C. intermediate
D. interpolation
3. The relationship between E and delta is \qquad .
A. $E=1$-delta
B. $\mathrm{E}=1+$ delta
C. $\mathrm{E}=$ delta-1
D. $\mathrm{E}=$ delta
4. The relationship between E and small delta is \qquad .
A. small delta $=1-\mathrm{E}$
B. small delta $=\mathrm{E}-1$
C. small delta $=(\mathrm{E}-1)-1$
D. small delta $=\mathrm{E}^{\wedge}(1 / 2)-\mathrm{E}^{\wedge}(-1 / 2)$
5. Choose the correct one.
A. $\mathrm{E}=\mathrm{ehD}=1$-delta
B. $\mathrm{E}=\mathrm{ehD}=1+$ delta
C. $\mathrm{E}=\mathrm{e}-\mathrm{hD}=1+$ delta
D. $\mathrm{E}=1 / \mathrm{ehD}=1 / 1+$ delta
6. In the function $\mathrm{y}=\mathrm{f}(\mathrm{x})$, the dependent variable y is called \qquad .
A. entry
B. argument
C. intermediate
D. interpolation
7. Iteration method is a \qquad method
A. direct
B. indirect
C. self correcting
D. step by step
8. Gauss Elimination Method \& Gauss Jordan Methods are \qquad methods.
A. direct
B. indirect
C. self correcting
D. step by step
9. The rate of convergence of Gauss Seidel Method is \qquad that of Gauss Jacobi Method.
A. once
B. twice
C. thrice
D. reciprocal
10. \qquad method is very fast compared to other methods.
A. Gauss Elimination
B. Gauss Jordan
C. Gauss Seidel
D. Gauss Jacobi
11. The order of convergence of Regula-Falsi method is \qquad .
A. 2
B. 1.172
C. 1.618
D. 1.17
12. The Newton Raphson Method is also called \qquad .
A. Bolzano's Bisection Method
B. Iterative Method
C. Method of Tangents
D. Newton's Method
13. The order of Newton Raphson Method is \qquad .
A. 1
B. 2
C. 3
D. 4
14. The modification of Gauss Elimination Method is \qquad .
A. Gauss Jordan Method
B. Gauss Jacobi Method
C. Gauss Elimination Method
D. Gauss Seidel Method
15. If alpha, beta, gamma are the roots of the equation $x 3-14 x+8=0$, then product of the roots is
\qquad
A. -8
B. -18
C. 28
D. 38
16. \qquad method is used for finding the dominant Eigen-value of a matrix.
A. Gauss Elimination Method
B. Gauss Jordan Method
C. Newton Raphson Method
D. Power method
17. Euler corrector is \qquad .
A. $\mathrm{Yn}+1=\mathrm{Yn}+\mathrm{hYn}$.
B. $Y n+1=Y n+h / 2(Y n+Y n+1)$
C. $\mathrm{Y} \mathrm{n}+1=\mathrm{Yn}+\mathrm{h} / 2\left(\mathrm{Y}^{\prime} \mathrm{n}+\mathrm{Y}^{\prime} \mathrm{n}+1\right)$
D. $Y n+1=Y n^{\prime}-h Y n^{\prime}$
18. Let f is \qquad on (a, b) and $\mathrm{f}(\mathrm{a})<\mathrm{f}(\mathrm{b})$. Then bisection method generates a sequence $\{\mathrm{Pn}\}$ approximating a zero p of f with $|\mathrm{Pn}-\mathrm{P}|$ less than or equal to $(\mathrm{b}-\mathrm{a}) / 2 \mathrm{n}, \mathrm{n}$ greater than or equal to1.
A. continuous function
B. discontinuous function
C. constant function
D. multivariate function
19. In Euler's method: Given initial value problem $y^{\prime}=d y / d x=f(x, y)$ with $y(x 0)=y 0$, then approximation is given by \qquad _.
A. $\mathrm{yn}+1=\mathrm{yn}+\mathrm{hf}(\mathrm{xn}-1, \mathrm{yn}-1)$
B. $\mathrm{yn}+1=\mathrm{yn}+\mathrm{hf}(\mathrm{xn}, \mathrm{yn})$
C. $\mathrm{yn}+1=\mathrm{yn}+\mathrm{hf}(\mathrm{xn}-1, \mathrm{yn})$
D. $\mathrm{yn}+1=\mathrm{yn}+\mathrm{hf}(\mathrm{xn}, \mathrm{yn}-1)$
20. $y(x+h)=y(x)+h f(x, y)$ is referred as \qquad method.
A. Euler
B. Modified Euler
C. Taylor's Series
D. Runge-Kutta
21. When more than one value is involved then the problem is known as \qquad .
A. initial Value Problem.
B. boundary Value Problem
C. interpolation
D. extrapolation
22. The error in the trapezoidal rule is of the order \qquad .
A. h
B. $h^{\wedge} 2$
C. $h^{\wedge} 3$
D. $h \wedge 4$
23. A smooth curve that can be drawn to pass through near the plotted points is called \qquad .
A. curve fit
B. approximating curve
C. empirical curve
D. lineare
curve
24. The equation of approximate curve taken as an approximate relation between x and y is called \qquad .
A. curve fit
B. approximating curve
C. empirical relation
D. linear
form
25. The general problem of finding equations of approximating curves which fit a given data is called \qquad _.
A. curve fitting
B. approximating curve
C. empirical relation
d. linear form
